¿Qué es la Fisiología Endocrina?

Fisiología Endocrina

La fisiología endocrina estudia las funciones normales de las glándulas de secreción interna; al igual que la anatomía y otras disciplinas biológicas, puede ser comparada entre las diferentes especies de organismos multicelulares vivos y los seres humanos. Las células endocrinas usualmente se acumulan en un órgano específico pero también se pueden encontrar diseminadas en otros aparatos, constituyendo el sistema endocrino difuso. Con el fin de coordinar la función celular en áreas como la reproducción, el crecimiento y desarrollo, la homeostasis o equilibro del medio interno, el ciclo sueño-estado de alerta y la regulación de la disponibilidad de energía, células especializadas liberan sustancias químicas a la sangre y a los líquidos tisulares, las que actúan como señales a otras células para controlar sus procesos. Estos químicos se llaman “hormonas” (del griego “hormaos”, que significa excitar, estimular, revolver) y hacen parte de las moléculas que envían señales de una célula a otra

Historia.

En 2002 se cumplió el primer siglo del descubrimiento de la secretina, hecho por Bayliss y Starling en 1902. Estos fisiólogos, conocidos en investigación cardiovascular y digestiva, observaron –mientras estudiaban la digestión y absorción en un asa aislada de duodeno- que si el contenido duodenal era ácido, entonces el páncreas empezaba a segregar grandes volúmenes de jugo rico en bicarbonato. Ya que dicha asa tenía irrigación más no inervación, ellos concluyeron que el estímulo se debía a una sustancia presente en la sangre, la que llamaron “secretina” y acuñaron el término “hormona”. Sorprende pensar que la secretina, de limitada utilidad en diagnóstico de la función pancreática, ahora esté de moda como una alternativa de tratamiento para ciertos casos de autismo, una enfermedad muy frecuente e incapacitante.

La teoría hormonal que siguió al descubrimiento de la secretina puso en jaque a la teoría neural, en boga en aquellos momentos. I.P. Pavlov –el de los reflejos condicionados, por lo que ganó el Nóbel de fisiología en 1904- postulaba que el funcionamiento de los órganos era debido al control nervioso. Pero ahora aparecía el concepto de hormona, el de los químicos que actuaban como reguladores biológicos a distancia. Aunque por lo general las hormonas se refieren a la secreción de lo que los antiguos llamaban “órganos sin conducto (excretor)” –en contraposición a las glándulas exocrinas- curiosamente la secretina es producida por células que pertenecen al sistema neuroendocrino difuso. Este concepto comenzó por la descripción en 1938 de unas células más bien pálidas, diseminadas en tejidos no endocrinos, hecha por Friedrich Feyrter. En 1969 A.G.Everson Pearse la histoquímica y ultra estructura de estas células productoras de pèptidos, las que denominó APUD.

Los primeros descubrimientos en la endocrinología fueron clínicos: la descripción por Addison de la Insuficiencia Suprarrenal, la diabetes –conocida desde la antigüedad- la Enfermedad de Basedow o el hipotiroidismo de Gull, el cretinismo, o incluso el “experimento” de Carlos Eduardo Brown-Sequard en 1879, quien se “rejuveneció” –al igual que su esposa- con la inyección de extracto testicular, generando gran interés en este campo. Sólo en el siglo XX se inició el estudio químico y fisiológico de las secreciones internas. La existencia del “medio interno” postulada en la centuria anterior por Claude Bernard obedeció sin embargo a la práctica de métodos experimentales.

En el campo de las hormonas, de los neurotransmisores y de los receptores se han premiado con el Nóbel a muchos investigadores, los que mencionaremos a lo largo de este libro. En este capítulo queremos especialmente mencionar a G.B. Elion, G.H. Hitchings y J. Black en cuanto a los receptores (1988); a R.A. Granit, H.K. Hartline, G. Wald (1969), D.H. Hubel, T.N. Wissel y R.W. Sperry en el campo de la fisiología y la bioquímica de la visión. A E.W. Sutherland (1971), quien descubrió el adenosìn-monofosfato cíclico (AMPc) como segundo mensajero en la transducción del mensaje hormonal, y a Martín Rodbell y Alfred G. Gilman (1994) que identificaron y purificaron la proteína G y que encontraron que era el transductor que ligaba el receptor hormonal con la amplificación de su respuesta.

Esta lista es bastante completa, pero no exhaustivas. Con frecuencia se descubren nuevos pèptidos y se conocen mejor sus genes de origen, por lo que se esperan muchas nuevas sustancias al dilucidarse por completo el genoma humano en el año 2003. La lista de citoquinas es también cada vez más larga.

Hay nuevos péptidos hormonales como el péptido liberador de prolactina, la adiponectina, otros factores de crecimiento como el IGF-2, etc. que se mencionarán más adelante.

¿Son hormonas todas las señales intercelulares?

Las primeras hormonas se descubrieron durante la investigación de enfermedades específicas; el déficit de insulina es causa de la diabetes, el de vasopresina, de la diabetes insípida, el de hormona tiroidea genera el cretinismo y el hipotiroidismo; su exceso, Enfermedad de Graves, el exceso o el déficit de hormona del crecimiento produce gigantismo o enanismo, etc. Ni el déficit de calcitonina ni el exceso de testosterona masculina o de progesterona femenina causan manifestaciones clínicas. En algunas ocasiones, las enfermedades hormonales están causadas por fenómenos de resistencia en el receptor –caso de la diabetes tipo 2- a veces el exceso de secreciones internas proviene de formación ectòpica –como en los síndromes paraneoplàsicos- o hay situaciones en las que la hormona producida es estructuralmente anormal. Pero por regla general, tanto los excesos de producción hormonal (conocidos como enfermedades “hiper”) como las deficiencias (que resultan en patologías “hipo”), son causantes de manifestaciones clínicas.

En realidad el sistema nervioso y el hormonal actúan estrechamente, para constituir el sistema neuroendocrino. Las neuronas y sus axones envían estímulos eléctricos, que por despolarización de sus membranas mandan sus mensajes a gran velocidad, pero en la terminal nerviosa que hace parte de la sinapsis elabora químicos denominados neurotransmisores, que se fijarán a receptores localizados en la neurona post-sináptica, o en el órgano blanco directamente.

tensiometro-suplementoseis-fig1

Esta integración neuroendocrina se observa no sólo en las células secretorias peptidèrgicas del hipotálamo, sino también en el sistema nervioso autónomo y en el control neural directo de algunas células endocrinas. Los mensajes hormonales del sistema endocrino llegan a todas las células, pero sólo interactúan con aquellas que tienen receptores específicos que hacen que la célula responda a la señal dada por una hormona determinada. La endocrinología es entonces el estudio de las hormonas, de sus receptores y de las señales intracelulares producidas por la interacción de los dos primeros elementos. El sistema inmune también está íntimamente relacionado con el neuroendocrino, ya que tiene una modulación neurohormonal para la producción linfocitaria de citoquinas, las que a su vez ejercen una influencia sobre las células endocrinas. Hay glosarios que definen a las interleucinas como hormonas segregadas por células inmunológicas (linfocitos, macrófagos y células dendríticas) que afectan otras células del sistema inmune al atraerlas, activarlas o inactivarlas. El efecto de las citoquinas se ejerce por acción paracrina o autocrina. Sistemas similares existen, no sólo en vertebrados e invertebrados, sino incluso en organismos unicelulares; hay bacterias por ejemplo en las que se observan remedos más sencillos, que indican que los sistemas de comunicación se presentan temprano en la evolución. Un complemento sobre esta sofisticada comunicación intercelular lo presentamos en el capítulo sobre el Sistema Neuro-inmuno-endocrino, que en el pasado se hubiera simplemente llamado sistema endocrino entèrico o en el mejor de los casos, sistema endocrino difuso. Tal vez la fisiología endocrina debiese llamarse de otra forma (algo así como “signalologìa intercelular”), a la manera como la radiología dio paso a la imaginología.

Las señales intercelulares son clásicamente endocrinas, pero también las hay autocrinas y paracrinas. Son autocrinas, cuando el producto celular sólo opera dentro del mismo citoplasma, o el químico segregado interactúa con el receptor de la membrana de esa misma célula; paracrinas, cuando entran a la circulación e interactúan a muy corta distancia, con receptores de células vecinas; se trataría por ejemplo del caso de las citoquinas que causan una respuesta inflamatoria local, o de la liberación de los neurotransmisores en los espacios sinápticos. Se ha visto que hormonas que fundamentalmente actúan a distancia sobre otras células, pueden también servir de señales locales, tal como lo acabamos de mencionar. Pero además en otras ocasiones, la molécula química que da la señal se encuentra anclada a la membrana celular, y directamente –por medio de una conexión en muesca- interactúa con un receptor en otra célula inmediatamente vecina, dando una señal yuxtacrina. La señal intercelular es intracrina cuando se produce la síntesis de esteroides localmente activos en tejidos de órganos blanco periféricos, como puede ser el caso de la producción prostática de dihidrotestosterona a partir de precursores suprarrenales inactivos allí como la DHEA y la androstenediona.

Estos términos –que parecen complicar el estudio de las señales intercelulares- han salido a flote gracias a la investigación en neuro-inmuno-endocrinología. En sentido estricto, no deberíamos llamar hormonas a las citoquinas, o a las moléculas ancladas a membranas, que se “cogen de la mano” a través de muescas, dando estímulos yuxtacrinos. Tampoco a los neurotransmisores, a los medicamentos, ligandos que actúan por interacción con receptores o a los bloqueadores enzimáticos, a los agonistas y antagonistas de receptores, a muchos antiandrógenos y antiestrògenos, etc. Pero en sentido amplio, todas las células tienen actividad “endocrina”, por lo que con mayor frecuencia encontramos autores que llaman “hormonas” a estos químicos. La serotonina liberada por la destrucción de plaquetas actúa localmente para producir vasoconstricción, mientras que la bradiquinina produce vasodilataciòn también local. Las hormonas neurovegetativas adrenales actúan sobre órganos a distancia cuando se liberan a la sangre, o localmente como neurotransmisores en las sinapsis; la dopamina es una hormona cuando actúa como PIH, pero es neurotransmisor en la generalidad de los casos, o precursor hormonal en el caso de la epinefrina. Por extensión llamamos también hormonas a los análogos sintéticos de las hormonas naturales, sean pèptidos o esteroides. Pero básicamente aquí nos referiremos a las hormonas naturales, que son “agonistas”, es decir, a las moléculas que se ligan a un receptor e inducen todos los eventos post-receptor que generan un efecto biológico, con diferente potencia según el caso. Por otro lado, los “antagonistas” son (usualmente medicamentos) que al ligarse al receptor, bloquean la fijación del agonista y así no generan la señal que produce los efectos intracelulares.

Hay quienes incluso consideran que las verdaderas hormonas son las hidrofìlicas, es decir los polipéptidos, mientras que las hidrofòbicas o liposolubles –como los esteroides y las hormonas tiroideas- se deberían llamar de manera diferente (pues no son mensajeros), por ejemplo, anacreones (un nombre futurible según Koeslag, mientras se aclaran bien ciertos aspectos de su fisiología). También hay quienes hablan de parahormonas (como el gas carbónico y los hidrogeniones), productos finales del metabolismo celular que ejercen sus funciones en una amplia gama de blancos.

Estas comunicaciones intercelulares están afectadas por una serie de factores como la distancia (a medida que la sustancia – o la hormona- se difunde o es transportada desde el sitio de su producción, su concentración disminuye); la disponibilidad y densidad de los receptores celulares; el medio local (proteínas fijadoras, enzimas que degradan o alteran factores); la accesibilidad de la hormona (o de la droga que actúa como hormona) a la célula blanco potencial. Dicho en otras palabras, la respuesta se aumenta o se disminuye cuando ocurre lo mismo con la fuerza de la señal, la densidad del receptor, o el proceso de inactivaciòn. Una hormona dada puede actuar con más fuerza en determinada célula blanco, porque el receptor tiene allí una gran afinidad por ella, pero actuar con poca fuerza en otra, pues el receptor de esta célula despliega escasa afinidad. Así como una hormona puede actuar en diferentes sitios, hay procesos fisiológicos que requieren la acción de varias hormonas, bien directamente o por un efecto permisivo que potencia la acción de la hormona primaria.