Determinación de Fosfolípidos que Contienen Colina

Schosinsky y colaboradores (49) describieron un método para determinar los fosfolípidos que contienen colina. El método se basa en la acción de la fosfolipasa D sobre los fosfolípidos, reacción que libera colina. Este compuesto es oxidado, por la colina-oxidasa, a betaína con la producción simultánea de peróxido de hidrógeno el cual se oxida a fenol: éste se acopla a la 4-aminofenazona produciendo un cromógeno rojo que se mide por espectrofotometría a 500 nm. La intensidad del color a 500 nm es directamente proporcional a la concentración de fosfolípidos que contienen colina. La sangre y la bilirrubina producen cierto grado de interferencia.

Dado que algunos autores consideran que la concentración de lecitina es una alternativa adecuada para evaluar la madurez pulmonar (50). Schosinsky y colaboradores hicieron un análisis comparativo de su método con la determinación de lecitina por un método enzimático, encontrando un coeficiente de correlación de 0,945. El método es sencillo, económico, preciso y requiere poco volumen de muestra, pero aún se necesita evaluar su utilidad clínica.

Recuento de Cuerpos Lamelares

Los CL tienen un tamaño similar al de las plaquetas por lo que puede determinarse su concentración en LA utilizando el canal de plaquetas de los contadores automáticos de hematología (51). El método fue descrito en 1989 por Dubin usando contadores hematológicos que registran un tamaño de partículas ≥ 1.7 fL (52). El recuento de CL puede compararse con las pruebas de absorbancia del LA debido a que la dispersión de la luz, causada por los CL en suspensión, es la responsable del color turbio del LA de los fetos maduros.

El recuento de CL no se afecta cuando el LA está contaminado con cantidades pequeñas de meconio, aunque aumenta falsamente cuando está presente una cantidad considerable (53). El recuento también aumenta falsamente con la presencia de moco (53) lo que limita su utilización en muestras obtenidas por vía vaginal. La sangre completa puede reducir falsamente el recuento de CL, mientras que la sangre lisada osmóticamente puede aumentarlo.

El recuento de LA no parece alterarse por la conservación refrigerada del LA hasta por dos semanas (54).

El resultado del recuento de CL se informa como número de CL/μL de LA. En general, un recuento > 50.000 CL/μL concuerda con una relación L/E > 2.0 en el 70% de los casos. Sin embargo, se han descrito varios puntos de corte para determinar madurez pulmonar fetal y, en consecuencia, diferentes características operativas de la prueba. Dubin (52) recomienda un punto de corte de 26.000 CL/μL para LA centrifugados y de 40.000 CL/Μl para LA no centrifugados; Lee y colaboradores (55) informaron una sensibilidad del 100% y una especificidad del 80% con un punto de corte de 50.000 CL/μL y, en nuestro medio, Cifuentes (56) informó un valor predictivo positivo del 94% y un valor predictivo negativo del 82% utilizando un punto de corte de 16.000 CL/μL Finalmente, un meta-análisis de Wijnberger LD y colaboradores (57) informó una sensibilidad entre el 71 y el 100% y una especificidad entre el 73 y el 100%.

Estos autores informaron que las curvas de las características operativas del receptor (curvas ROC) para la predicción del SDR del recién nacido, mostraban un desempeño ligeramente mejor del recuento de CL que la relación L/E (58)

El recuento de CL es una técnica sencilla, de bajos costos y con buenas características operativas, por lo que se ha considerado como la primera elección para el estudio de la madurez pulmonar fetal (58). No obstante, además de las esperadas diferencias en las características operativas obtenidas con distintas prevalencias y diversos puntos de corte, se han obtenido resultados discordantes según si hay o no centrifugación (58), cuando hay diferencias en las técnicas de centrifugación (59) y cuando se usan diferentes tipos de contadores de hematología para hacer el conteo de CL. Un estudio comparativo encontró que el Sysmex XE-2100 (Sysmex) mostró la mejor concordancia (86%) con el Coulter Gen-S (Beckman Coulter), seguido por el ADVIA 120 (Bayer Corporation) (78%), y que la concordancia del Celldyn 3500 (Abbott Laboratorios) con el Coulter Gen-S fue del 66% (59). Por estas razones se requiere que las instituciones investiguen las características operativas de la prueba y establezcan el punto de corte apropiado para su laboratorio.

Referencias

1. Sadler TW. Capítulo 13. Aparato respiratorio. En: Sadler TW. Langman Embriología Médica. Editorial Médica Panamericana – Williams & Wilkins. Bogotá. Sexta Edición. 1993. pp.234-241.
2. McMurtry IF. Editorial: Introduction: pre- and postnatal lung development, maturation, and plasticity. AJP – Lung 2002; 282:341-344.
3. Kling DE, Lorenzo HK, Trbovitch AM, Kinane TB, Donahoe PK, Schnitzer JJ. MEK-1/2 inhibition reduces branching morphogenesis and causes mesenchymal cell apoptosis in fetal rat lungs. Am J Physiol Lung Cell Mol Physiol 2002; 282: L370–L378.
4. Young SL, Evans K, Eu JP. Nitric oxide modulates branching morphogenesis in fetal rat lung explants. Am J Physiol Lung Cell Mol Physiol 2002; 282: L379–L385.
5. Strayer M, Savani RC, Gonzales LW, Zaman A, Cui Z, Veszelovszky E, et al. Human surfactant protein B promoter in transgenic mice: temporal, spatial, and stimulus-responsive regulation. Am J Physiol Lung Cell Mol Physiol 2002; 282: L394–L404.
6. Willet KE, Kramer BW, Kallapur SG, Ikegami M, Newn-ham JP, Moss TJ, et al. Intra-amniotic injection of IL-1 induces inflammation and maturation in fetal sheep lung. Am J Physiol Lung Cell Mol Physiol 2002; 282: L411–L420.
7. Srinivasan S, Strange J, Awonusonu F, Bruce MC. Insulin-like growth factor I receptor is downregulated after alveolarization in an apoptotic fibroblast subset. Am J Physiol Lung Cell Mol Physiol 2002; 282: L457–L467.
8. Hednick HL, Kaban JM, Pacheco BA, Losty PD, Doody DP, Ryan DP, et al. Prenatal glucocorticoids improve pulmonary morphometrics in fetal sheep with congenital diaphragmatic hernia. J Pediatr Sur 1997; 32: 217-221.
9. Ijsselstijn H, Pacheco BA, Albert A, Sluiter W, Donahoe PK, de Jongste JC, et al. Prenatal hormones alter antioxidant enzymes and histology in rats with congenital diaphragmatic hernia. Am J Physiol 1997; 272: L1059-L1065.
10. Willet KE, Jobe AH, Ikegami M, Kovar J, Sly PD. Lung morphometry after repetitive antenatal glucocorticoid treatment in preterm sheep. Am J Respir Int Care Med 2001; 163: 1437-1443.
11. Boland R, Joyce BJ, Wallace M, Stanton H, Fosang AJ, Pierce RA, et al. Cortisol enhances structural maturation of the hypoplastic fetal lung in sheep. J Physiol 2003; 554: 505-517.
12. Avery ME. Surfactant Deficiency in Hyaline Membrane Disease. The Story of Discovery. Am J Respir Crit Care Med 2000; 161: 1074–1075.
13. Avery ME, Mead J. Surface properties in relation to atelectasis and hyaline membrane disease. Am. J. Dis. Child 1959; 97:517.
14. Schaller-Bals S, Bates SR, Notarfrancesco K, Tao J-Q, Fisher AB, Shuman H. Surface-expressed lamellar body membrane is recycled to lamellar bodies. Am J Physiol Lung Cell Mol Physiol 2000; 279: L631–L640.
15. Tierney, DE. Lung surfactant: some historical perspectives leading to its cellular and molecular biology. Am J Physiol 1989; 257: L1-L12.
16. Mendelson CR, Giggaram V. Hormonal control of the surfactant system in fetal lung. Ann Rev Physiol 1991; 53: 415-440.
17. Wright JR, Clements JA. Metabolism and turnover of lung surfactant. Am Rev Resp Dis 1987; 135: 426-444.
18. Rooney SA. The surfactant system and lung phospholipid biochemistry. Am Rev Respir Dis 1985; 131: 439-460.
19. Manz-Keinke H, Plattner H, Schlepper-Schaper J. Lung surfactant protein-A enhances serum-independent phagocytosis of bacteria alveolar-macrophage. Eur J Cell Biol 1992; 57: 95-100.
20. Hickman-Davis J, Gibas-Erwin J, Lindsey JR, Matalon S. Surfactant protein A mediates mycoplasmacidal activity of alveolar macrophages by production of peroxynitrite. Proc Natl Acad Sci USA 1999; 96: 4953-4958.
21. Shimoya K, Taniguchi T, Matsuzaki N, Moriyama A, Murata Y, Kitajima H, Fujimura M, Nakayama M. Chorioamnionitis decreased incidence of respiratory distress syndrome by elevating fetal interleukin- 6 serum concentration. Hum Reprod 2000; 15(10):2234–2240.
22. Schmitz G, Muller G. Structure and function of lamellar bodies, lipid-protein complexes involved in storage and secretion of cellular lipids. J Lipid Res 1991; 32: 1539-1570.
23. Chander A, Fisher AB. Regulation of lung surfactant secretion. Am J Physiol 258 (Lung Cell. Mol. Physiol. 2): L241–L253, 1990. Kalina M, Socher R. Internalization of pulmonary surfactant into lamellar bodies of cultured rat pulmonary type II cells. J Histochem Cytochem 1990; 38: 483-492.
24. Kalina M, Socher R. Internalization of pulmonary surfactant into lamellar bodies of cultured rat pulmonary type II cells. J Histochem Cytochem 1990; 38: 483-492.
25. Gluck L, Kulovich M, Borer RC Jr, Keidel WN. The interpretation and significance of the lecitin/sphyngomyelin ratio in amniotic fluid. Am J Obstet Gynecol 1974; 120: 142-156.
26. Hallman M, Kulovich MV, Kirkpatrick E, Sugarman RG, Gluck L. Phosphatidylinositol and phosphatidylglycerol in amniotic fluid: indices of lung maturity. Am J Obstet Gynecol 1976; 125:613-617.
27. Rustow B, Kunze, D. Diacylglycerol synthesized in vitro from glycerol-3-phosphate and the endogenous diacylglycerol are different substrate pools for the biosynthesis of phosphatidylcholine in rat lung microsomes. Biochim Biophys Acta 1985; 835: 273-278.
28. Harding PGR, Chan F, Casola PG, Fullows GF, Wong T, Possmayer F. Subcellular distribution of enzymes related to phospholipid synthesis in developing rat lung. Biochim Biophys Acta1983; 750: 373-382.
29. Ñáñez H, Ruiz AI, Bautista A, Angel E. Capítulo 23. Maduración Pulmonar Fetal. En: Ñáñez H, Ruiz AI y colaboradores: Texto de Obstetricia y Perinatología. Una contribución a la enseñanza del arte, ciencia y tecnología. Universidad Nacional de Colombia, Instituto Materno Infantil. 1ª. Edición. Lito Camargo Limitada, Bogotá, agosto de 1999. pp. 359-369.
30. Snyder JM, Mendelson CR, Johnston JM. The morphology of lung development in the human fetus. In: Nelson GH, ed. Pulmonary development: transition from intrauterine to extrauterine life. New York: Marcel Dekker, 1985: 19-46.
31. Mulugeta S, Gray JM, Notarfrancesco KL, Gonzales LW, Koval M, Feinstein SI, et al. Identification of LBM180, a lamellar body limiting membrane protein of alveolar type II cells, as the ABC transporter protein ABCA3. J Biol Chem 2002; 277 (25): 22147–22155.
32. Haller T, Auktor K, Frick M, Mair N, Dietl P. Threshold calcium levels for lamellar body exocytosis in type II pneumocytesThreshold calcium levels for lamellar body exocytosis in type II pneumocytes. Am J Physiol 1999; 277 (Lung Cell. Mol. Physiol. 21): L893–L900.
33. Bates SR, Tao J-Q, Schaller S, Fisher AB, Shuman H. Lamellar body membrane turnover is stimulated by secretagogues. Am. J.Physiol. Lung Cell. Mol. Physiol 2000; 278: L443–L452.
34. Mukherjee S, Ghosh RN, Maxfield FR. Endocytosis. Physiol Rev 1997; 77: 759–803.
35. Liggins GC, Howie RN. A controlled trial of antepartum glucocorticoid treatment for prevention of the respiratory distress syndrome in premature infants. Pediatrics 1972; 50:515–525.
36. Crowley PA. Prophylactic corticosteroids for preterm delivery: Cochrane review. In: The Cochrane Library, I. Oxford, UK: Update Software; 1999.
37. Taeusch HW Jr. Glucocorticoid prophylaxis for respiratory distress syndrome: a review of potential toxicity. J Pediatr 1975; 87:617-623.
38. Collaborative Group on Antenatal Steroid Therapy. Effects of antenatal dexamethasone administration in the infant: long-term follow-up. J Pediatr 1984; 104:259-267.
39. Schmand B, Neuvel J, Smolders-deHaas H, Hoeks J, Treffers PE, Koppe JG. Psychological development of children who were treated antenatally with corticosteroids to prevent respiratory distress syndrome. Pediatrics 1990; 86:58-64.
40. Doyle LW, Ford GW, Rickards AL, Kelly EA, Davis NM, Callanan C, Olinsky A. Antenatal Corticosteroids and Outcome at 14 Years of Age in Children With Birth Weight Less Than 1501 Grams. Pediatrics 2000; 106(1): E2.
41. Gabbe SG, Graves CR. Management of Diabetes Mellitus Complicating Pregnancy. Obstet Gynecol 2003; 102: 857–68.
42. Gómez G. Capítulo 37. Diabetes y Embarazo. En: Cifuentes R. Obstetricia de Alto Riesgo. Sexta Edición. Editorial Distribuna, Bogotá. 2006. pp. 521-538.
43. Ruhl WC, Spellacy WN. Effects of blood or meconium on the determination of the amniotic fluid lecithin/ sphingomyelin ratio. Am J Obstet Gynecol 1975; 121: 321-328.
44. Clements JA, Platzker AC, Tierney DF, Hobel CJ, Creasy RK, Margolis AJ, et al. Assessment of the risk of the respiratory-distress syndrome by a rapid test for surfactant in amniotic fluid. New Engl J Med 1972; 286: 1077-1081.
45. Parra MO, Peralta MT. Capítulo 14. Diabetes y Gestación. En: Gómez PI, Ruiz AI (Eds): Temas de Interés en Ginecología y Obstetricia. Universidad Nacional de Colombia, Facultad de Medicina. Departamento de Ginecología y Obstetricia. Instituto Materno Infantil, Santa Fé de Bogotá, D.C. Litocamargo, Bogotá. 1999. pp. 157-169.
46. Cunningham MD, McKean HE, Gillispie DH, Greene JW Jr. Improved prediction of fetal lung maturity in diabetic pregnancies: a comparison of chromatographic methods. Am J Obstet Gynecol 1982; 142(2): 197-204.
47. Dubin SB. The laboratory assessment of fetal lung maturity. Am J Pathol 1992; 97: 836-843. 48. Herbert WN, Chapman JF, Schonoor MM. Role of the TDX-FLM assay in fetal lung maturity. Am J Obstet Gynecol 1993; 168: 808-818.
49. Schosinsky K, Jiménez M, Olivia Dimas C. Determinación enzimática de fosfolípidos que contienen colina en líquido amniótico. Rev Costarric Cienc Méd. [online]. jun. 1998, vol.19, no.1-2 [citado 24 Marzo 2006], p.71-85. Disponible en la World Wide Web: . ISSN 0253-2948.
50. Falconer GF, Hodge JS, Gadd RL. Influence of amniotic fluid volumen on lecithin estimation in prediction of respiratory distress. BMJ 1973; ii:689-694.
51. Fakhoury G, Daikoku NH, Benser J, Dubin NH, Lamellar body concentrations and the prediction of fetal pulmonary maturity. Am J Obstet Ginceol 1994; 170: 72-76.
52. Dubin SB. Characterization of amniotic fluid lamellar bodies by resistive-pulse counting: relationship to measures of fetal lung maturity. Clin Chem 1989; 35: 612-616.
53. Ashwood ER, Palmer EE,Taylor JS, Pingree SS. Lamellar body counts for rapid fetal lung maturity testing. Obstet Gynecol 1993; 81:619-624.
54. Ashwood ER, Oldroyd RG, Palmer SE. Measuring the number of lamellar body particles in amniotic fluid. Obstet Gynecol 1990; 75: 289-292.
55. Lee IS, Cho YK, Kim A, Min WK, Kim KS, Mok JE. Lamellar body count in amniotic fluid as a rapid screening test for fetal lung maturity. J Perinatol 1996;16:176-180.
56. Cifuentes R. Evaluación de la madurez pulmonar fetal. En: Cifuentes R. Obstetricia de Alto Riesgo. 5ª. Edición. 2000. p. 451-466.
57. Wijnberger LD, Huisjes AJ, Voorbij HA, Franx A, Bruinse HW, Mol BW. The accuracy of lamellar body count and lecithin/sphingomyelin ratio in the prediction of neonatal respiratory distress syndrome: a meta-analysis. BJOG. 2001;108:583-8.
58. Cifuentes R. Capítulo 23. Evaluación de la Madurez Fetal. En: Cifuentes R. Obstetricia de Alto Riesgo. Sexta Edición. Editorial Distribuna, Bogotá. 2006. p. 327-338.
59. Szallasi A, Gronowski AM, Eby CS. Lamellar body count in amniotic fluid: a comparative study of four different hematology analyzers. Clinical Chemistry 2003; 49:994-997.

CLIC AQUÍ Y DÉJANOS TU COMENTARIO

Deja un comentario

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *