Reacción en Cadena de La Polimerasa de Infecciones Respiratorias: Discusión

DISCUSIÓN

El presente meta-análisis resume la exactitud diagnóstica de 69 estudios, que evalúan la validez de la PCR en el diagnóstico de M. pneumoniae. En general, la sensibilidad fue más variable y baja en comparación con la especificidad.

Estudios publicados entre el 2004 a 2009, reportaron sensibilidades inferiores a estudios publicados entre 1989 y 2003. La PCR fue menos sensible en la población infantil comparada con estudios que incluían población adulta.

Si bien la concentración de MgCl2 debe ser optimizada dependiendo del gen blanco a amplificar, así como de los diferentes reactivos y condicionesde una prueba, este meta-análisis mostró que estudios con concentraciones de MgCl2 superiores a 1,5mM mostraron mayor exactitud en comparación a aquellos donde concentraciones menores eran usadas.

En cuanto al uso de antibióticos, sólo 11 estudios especificaron el uso previo de antibióticos de los cuales, sólo uno tenía pacientes con exposición previa a antibióticos (32).

La diferencia en la exactitud de la PCR en la población infantil en comparación con estudios que incluyeron adultos puede ser explicada por la dificultad de obtención de muestras óptimas para la población infantil (7). No se puede determinar si esta diferencia es independiente del tipo de muestra usada, métodos de transporte y conservación de las mismas por la falta de especificación de algunos estudios.

Así mismo, por la falta de detalle en los resultados por edad de los pacientes, el efecto en la exactitud no puede ser directamente estimada.

Sin embargo, el análisis de estudios que reportaron por muestras no evidenció diferencias entre estudios con solo niños y aquellos que incluían niños y adultos; lo cual es consistente con la dificultad en la obtención de muestras, y especialmente muestras de buena calidad en niños.

Las diferencias en exactitud de estudios de pacientes y estudios de muestras, se pueden explicar por incremento de la sensibilidad en razón a múltiples muestras obtenidas por cada paciente y a concentraciones variables de ácido Desoxirribonucleico o ADN en las diferentes muestras, así como a la eventual presencia de “contaminantes” como hemoglobina y diversas proteínas, que en concentraciones variables pueden afectar las pruebas moleculares (88).

Contrario a las recientes recomendaciones en cuanto al tipo de muestra respiratoria, nuestro meta-análisis no apoya la elección de un tipo de muestra en particular (7,89). En general, los estudios incluidos que emplearon muestras de tracto respiratorio inferior también utilizaron muestras de tracto respiratorio superior, y por ende, el efecto en la exactitud diagnóstica no se puede evaluar.

En cuanto a detalles técnicos de la PCR sólo la concentración de MgCl2 demostró tener influencia en la exactitud diagnóstica, en la práctica es bien conocido que la concentración de este componente afecta el proceso de amplificación.

Mientras en una concentración adecuada el MgCl2 permite la estabilización de nucleótidos pues forma con ellos complejos solubles para producir un sustrato reconocible por la enzima Taq-polimerasa, en concentraciones no adecuadas, altas o bajas, se puede afectar la especificidad en la reacción PCR pudiendo darse lugar, por ejemplo, a la presencia de fragmentos inespecíficos (90).

Dentro de las limitaciones de nuestro metaanálisis se encuentra la búsqueda de artículos en una sola base de datos (MEDLINE), inclusión de artículos hasta junio de 2009 y restricción de artículos escritos en idioma inglés o español.

De hecho, el test de Egger indica sesgo de selección de acuerdo con sensibilidad y especificidad. Aunque la sensibilidad global es relativamente pequeña, el test indica que los estudios con menor precisión y mayor sensibilidad tienen una probabilidad más alta de ser publicados.

Aunque la especificidad global es alta, el test de Egger indica que estudios con mayor especificidad y menor precisión tiene una mayor probabilidad de ser publicados. Dada la heterogenidad entre los estimadores de los diferentes estudios el test de Egger debe ser considerado a la luz de sus limitaciones(93,94).

Adicionalmente, debido a que no existe consenso en el estándar de referencia para el diagnóstico de M. pneumoniae en este estudio se empleó el estándar definido por cada investigador y se evaluó características del estándar de referencia que explicaran cambios en la exactitud de PCR (Tabla 2).

Los estándares de referencia para evaluar el rendimiento de las técnicas de PCR en el diagnóstico de M. pneumoniae son imperfectos. Un estudio de población asintomática en que se compararon 8 pruebas serológicas comerciales, se demostró una baja correlación entre ellas, dado por un factor kappa inferior a 0,6 (91).

Por la variabilidad de puntos de corte de la serología para considerar una prueba como positiva, no fue posible evaluar el efecto en la estimación de sensibilidad y especificidad de PCR. Sin embargo, para el tipo de prueba como la ELISA se estableció que el punto de corte es un factor de heterogeneidad.

Para demostrar infección por M. pneumoniae después de un resultado positivo por PCR, algunos autores han sugerido la necesidad de confirmar el resultado por otro tipo de pruebas(11). Sin embargo, dada la alta especificidad de la PCR, un resultado positivo en pacientes con síntomas respiratorios tiene una probabilidad inferior al 0,05 de ser un falso positivo.

Este resultado está posiblemente relacionado con portadores asintomáticos de M.pneumoniae. En contraste, se ha reportado la presencia de Inmunoglobulina M (IgM) en un 30%, aproximadamente, de población asintomática (91). La alta especificidad de la PCR permitiría disminuir el inadecuado tratamiento de pacientes sin infección y por ende la resistencia a antibióticos.

Un meta-analisis elaborado por Zahng L y colaboradores acerca del diagnóstico de M. pneumoniae por PCR versus serología incluyó 15 estudios publicados entre el año 2000 a 2009. (92). Aunque el presente meta-análisis a diferencia del meta-análisis de Zanhg L, no realizó la búsqueda en la base de datos EMBASE, la inclusión de estudios fue más amplia y por esto la evaluación del desempeño de la PCR es más exacta.

En ambos meta-análisis se evidenció mayor exactitud en estudios de adultos comparado con aquellos que incluyen población infantil. Nuestro meta-análisis no encontró diferencias en heterogeneidad debidas al tipo de PCR empleada o al tipo de gen amplificado. El meta-analisis de Zahng L y col. tiene limitaciones debido al escaso número de estudios incluidos ya que no se evaluó heterogeneidad derivada del punto de corte en las pruebas de serología (92).

Los resultados de meta-análisis son de gran utilidad para realizar análisis de sensibilidad con el fin de proveer escenarios útiles para la toma de decisiones en la práctica clínica. Específicamente con los resultados de nuestro meta-análisis realizamos un análisis de sensibilidad para evaluar la utilidad clínica de la PCR en el diagnóstico de M. pneumoniae.

Por ejemplo, si la prevalencia en niños es igual o mayor del 40%, con base en los estimadores globales de sensibilidad (0,65) y especificidad (0,96), el valor predictivo positivo medio de la PCR será cerca del 0,91. Por lo tanto, un resultado positivo permite suficiente certeza para iniciar tratamiento y reduce la necesidad de otras pruebas diagnósticas.

Sin embargo, un resultado negativo provee menos certeza ya que el valor predictivo negativo será de 0,76. Aun en sitios con alta prevalencia, se deben valorar posibles infecciones respiratorias de etiología mixta debido a que el resultado de la PCR específica para M. pneumoniae no excluye la presencia de otros patógenos.

En conclusión, éste meta-análisis determinó que la PCR no puede ser recomendada aún como prueba rutinaria. Sin embargo, en poblaciones con prevalencias de infección por M. pneumoniae superiores a 40%, un resultado positivo por PCR permite suficiente certeza para iniciar tratamiento y reduce la necesidad de otras pruebas diagnósticas.

Por la alta heterogeneidad encontrada, el presente meta-análisis no permite validar ni descartar la utilidad de la PCR en la práctica clínica. Por lo tanto la validez debe ser evaluada teniendo en cuenta las condiciones locales como la prevalencia de M. pneumoniae, cuadro clínico y exactitud de la técnica de PCR empleada. Futuros estudios deben reportar el espectro de la enfermedad y los resultados deben ser reportados por tipo de muestra y de acuerdo a los diferentes puntos de corte de la prueba de referencia utilizada.

Agradecimientos. A la colega Laura Patricia Camargo, por sus aportes en la recolección de datos. Esta investigación fue respaldada por la Facultad de Medicina, de la Universidad de los Andes, Bogotá – Colombia y por la Facultad de Ciencias de la Universidad de los Andes, Bogotá – Colombia.

Conflicto de intereses: los autores del presente manuscrito declaran que no tienen conflictos de interés.

Financiación: la investigación fue financiada por la Universidad de los Andes.

REFERENCIAS

1. Katz B, Waites K. Emerging intracellular bacterial infections.Clin Lab Med 2004 Sep;24(3):627-49, vi.
2. Waites KB, Talkington DF. Mycoplasma pneumoniae and its role as a human pathogen. Clin Microbiol Rev 2004 Oct;17(4):697- 728, table.
3. Lode HM. Managing community-acquired pneumonia: a European perspective. Respir Med 2007 Sep;101(9):1864-73.
4. Chiang WC, Teoh OH, Chong CY, Goh A, Tang JP, Chay OM. Epidemiology, clinical characteristics and antimicrobial resistance patterns of community-acquired pneumonia in 1702 hospitalized children in Singapore. Respirology 2007 Mar;12(2):254-61.
5. Khanna M, Fan J, Pehler-Harrington K, Waters C, Douglass P, Stallock J, et al. The pneumoplex assays, a multiplex PCRenzyme hybridization assay that allows simultaneous detection of five organisms, Mycoplasma pneumoniae, Chlamydia (Chlamydophila) pneumoniae, Legionella pneumophila, Legionella micdadei, and Bordetella pertussis, and its real-time counterpart. J Clin Microbiol 2005 Feb;43(2):565-71.
6. Bii CC, Yamaguchi H, Kai M, Nagai K, Sugiura Y, Taguchi H, et al. Mycoplasma pneumoniae in children with pneumonia
at Mbagathi District Hospital, Nairobi. East Afr Med J 2002 Jun;79(6):317-22.
7. Wolf J, Daley AJ. Microbiological aspects of bacterial lower respiratory tract illness in children: atypical pathogens. Paediatr Respir Rev 2007 Sep;8(3):212-9, quiz.
8. Martinez MA, Ruiz M, Zunino E, Luchsinger V, Avendano LF. Detection of Mycoplasma pneumoniae in adult communityacquired pneumonia by PCR and serology. J Med Microbiol 2008 Dec;57(Pt 12):1491-5.
9. Kim NH, Lee JA, Eun BW, Shin SH, Chung EH, Park KW, et al. Comparison of polymerase chain reaction and the indirect
particle agglutination antibody test for the diagnosis of Mycoplasma pneumoniae pneumonia in children during two outbreaks. Pediatr Infect Dis J 2007 Oct;26(10):897-903.
10. Ou ZY, Zhou R, Wang FH, Lu JP, Xia JQ, Xia HM, et al. Retrospective analysis of Mycoplasma pneumoniae infection in
pediatric fatal pneumonia in Guangzhou, South China. Clin Pediatr (Phila) 2008 Oct;47(8):791-6.
11. Atkinson TP, Balish MF, Waites KB. Epidemiology, clinical manifestations, pathogenesis and laboratory detection of Mycoplasma pneumoniae infections. FEMS Microbiol Rev 2008 Nov;32(6):956-73.
12. Sanchez-Vargas FM, Gomez-Duarte OG. Mycoplasma pneumoniae- an emerging extra-pulmonary pathogen. Clin Microbiol Infect 2008 Feb;14(2):105-17.
13. Vervloet LA, Marguet C, Camargos PA. Infection by Mycoplasma pneumoniae and its importance as an etiological
agent in childhood community-acquired pneumonias. Braz J Infect Dis 2007 Oct;11(5):507-14.
14. Daxboeck F, Krause R, Wenisch C. Laboratory diagnosis of Mycoplasma pneumoniae infection. Clin Microbiol Infect 2003 Apr;9(4):263-73.
15. Chan YR, Morris A. Molecular diagnostic methods in pneumonia. Curr Opin Infect Dis 2007 Apr;20(2):157-64.
16. Miller WC. Can we do better than discrepant analysis for new diagnostic test evaluation? Clin Infect Dis 1998 Nov;27(5):1186-93.
17. Dersimonian R, Laird N. Meta-analysis in clinical trials. Control Clin Trials 1986 Sep;7(3):177-88.
18. Moses LE, Shapiro D, Littenberg B. Combining independent studies of a diagnostic test into a summary ROC curve: ataanalytic approaches and some additional considerations. Stat Med 1993 Jul 30;12(14):1293-316.
19. Egger M, Davey SG, Schneider M, Minder C. Bias in metaanalysis detected by a simple, graphical test. BMJ 1997 Sep
13;315(7109):629-34.
20. Higgins RR, Lombos E, Tang P, Rohoman K, Maki A, Brown S, et al. Verification of the ProPneumo-1 assay for the simultaneous detection of Mycoplasma pneumoniae and Chlamydophila pneumoniae in clinical respiratory specimens. Ann Clin Microbiol Antimicrob 2009;8:10.
21. Domenech C, Leveque N, Lina B, Najioullah F, Floret D. Role of Mycoplasma pneumoniae in pediatric encephalitis. Eur J Clin Microbiol Infect Dis 2009 Jan;28(1):91-4.
22. El Sayed ZM, Raafat D, El Metaal AA. Relevance of serology for Mycoplasma pneumoniae diagnosis compared with PCR and culture in acute exacerbation of bronchial asthma. Am J Clin Pathol 2009 Jan;131(1):74-80.
23. Nilsson AC, Bjorkman P, Persson K. Polymerase chain reaction is superior to serology for the diagnosis of acute Mycoplasma pneumoniae infection and reveals a high rate of persistent infection. BMC Microbiol 2008;8:93.
24. Loens K, Beck T, Ursi D, Overdijk M, Sillekens P, Goossens H, et al. Evaluation of different nucleic acid amplification techniques for the detection of M. pneumoniae, C. pneumoniae and Legionella spp. in respiratory specimens from patients with community-acquired pneumonia. J Microbiol Methods 2008 Jun;73(3):257-62.
25. Hohenthal U, Vainionpaa R, Meurman O, Vahtera A, Katiskalahti T, Nikoskelainen J, et al. Aetiological diagnosis of community acquired pneumonia: utility of rapid microbiological methods with respect to disease severity. Scand J Infect Dis 2008;40(2):131-8.
26. Martinez MA, Ruiz M, Zunino E, Luchsinger V, Avendano LF. Detection of Mycoplasma pneumoniae in adult communityacquired pneumonia by PCR and serology. J Med Microbiol 2008 Dec;57(Pt 12):1491-5.
27. Kashyap B, Kumar S, Sethi GR, Das BC, Saigal SR. Comparison of PCR, culture & serological tests for the diagnosis of Mycoplasma pneumoniae in community-acquired lower respiratory tract infections in children. Indian J Med Res 2008 Aug;128(2):134-9.
28. Otomo S, Yamamura J, Hayashi E, Nakamura T, Kakinuma H, Nakamoto Y, et al. Analysis of children with Chlamydophila (Chlamydia) pneumoniae and Mycoplasma pneumoniae respiratoryinfections by real-time PCR assay and serological tests. APMIS 2008 Jun;116(6):477-83.
29. van de Garde EM, Endeman H, van Hemert RN, Voorn GP, Deneer VH, Leufkens HG, et al. Prior outpatient antibiotic use as predictor for microbial aetiology of community-acquired pneumonia: hospital-based study. Eur J Clin Pharmacol 2008
Apr;64(4):405-10.
30. Huong PL, Thi NT, Nguyet NT, Van TK, Hang DT, Huong VT, et al. First report on clinical features of Mycoplasma pneumo niae infections in Vietnamese children. Jpn J Infect Dis 2007 Nov;60(6):370-3.
31. Kim NH, Lee JA, Eun BW, Shin SH, Chung EH, Park KW, et al. Comparison of polymerase chain reaction and the indirect particle agglutination antibody test for the diagnosis of Mycoplasma pneumoniae pneumonia in children during two outbreaks. Pediatr Infect Dis J 2007 Oct;26(10):897-903.
32. Souliou E, Almasri M, Papa A, Theodoridou A, Diza E. Laboratory diagnosis of Mycoplasma pneumoniae respiratory tract infections in children. Eur J Clin Microbiol Infect Dis 2007 Jul;26(7):513-5.
33. Liu FC, Chen PY, Huang F, Tsai CR, Lee CY, Wang LC. Rapid diagnosis of Mycoplasma pneumoniae infection in children by polymerase chain reaction. J Microbiol Immunol Infect 2007 Dec;40(6):507-12.
34. Di ME, Cangemi G, Filippetti M, Melioli G, Biassoni R. Development and clinical validation of a real-time PCR using a uni-molecular Scorpion-based probe for the detection of Mycoplasma pneumoniae 35. Sidal M, Kilic A, Unuvar E, Oguz F, Onel M, Agacfidan A, et al. Frequency of Chlamydia pneumoniae and Mycoplasma pneumoniae infections in children. J Trop Pediatr 2007 Aug;53(4):225-31.
36. Klement E, Talkington DF, Wasserzug O, Kayouf R, Davidovitch N, Dumke R, et al. Identification of risk factors for infection in an outbreak of Mycoplasma pneumoniae respiratory tract disease.Clin Infect Dis 2006 Nov 15;43(10):1239-45.
37. Sohn JW, Park SC, Choi YH, Woo HJ, Cho YK, Lee JS, et al. Atypical pathogens as etiologic agents in hospitalized patients with community-acquired pneumonia in Korea: a prospective multi-center study. J Korean Med Sci 2006 Aug;21(4):602-7.
38. Yamazaki T, Narita M, Sasaki N, Kenri T, Arakawa Y, Sasaki T. Comparison of PCR for sputum samples obtained by induced cough and serological tests for diagnosis of Mycoplasma pneumoniae infection in children. Clin Vaccine Immunol 2006 Jun;13(6):708-10.
39. Stralin K, Korsgaard J, Olcen P. Evaluation of a multiplex PCR for bacterial pathogens applied to bronchoalveolar lavage. Eur Respir J 2006 Sep;28(3):568-75.
40. Morozumi M, Nakayama E, Iwata S, Aoki Y, Hasegawa K, Kobayashi R, et al. Simultaneous detection of pathogens in clinical samples from patients with community-acquired pneumonia by real-time PCR with pathogen-specific molecular beacon probes.J Clin Microbiol 2006 Apr;44(4):1440-6.
41. Morozumi M, Ito A, Murayama SY, Hasegawa K, Kobayashi R, Iwata S, et al. Assessment of real-time PCR for diagnosis
of Mycoplasma pneumoniae pneumonia in pediatric patients. Can J Microbiol 2006 Feb;52(2):125-9.
42. Bamba M, Jozaki K, Sugaya N, Tamai S, Ishihara J, Kori T, et al. Prospective surveillance for atypical pathogens in children with community-acquired pneumonia in Japan. J Infect Chemother 2006 Feb;12(1):36-41.
43. Stralin K, Tornqvist E, Kaltoft MS, Olcen P, Holmberg H.Etiologic diagnosis of adult bacterial pneumonia by culture and PCR applied to respiratory tract samples. J Clin Microbiol 2006 Feb;44(2):643-5.
44. Pitcher D, Chalker VJ, Sheppard C, George RC, Harrison TG. Real-time detection of Mycoplasma pneumoniae in respiratory samples with an internal processing control. J Med Microbiol 2006 Feb;55(Pt 2):149-55.
45. Deerojanawong J, Prapphal N, Suwanjutha S, Lochindarat S, Chantarojanasiri T, Kunakorn M, et al. Prevalence and clinical features of mycoplasma pneumoniae in Thai children.J Med Assoc Thai 2006 Oct;89(10):1641-7.
46. Saito R, Misawa Y, Moriya K, Koike K, Ubukata K, Okamura N. Development and evaluation of a loop-mediated isothermal amplification assay for rapid detection of Mycoplasma pneumoniae. J Med Microbiol 2005 Nov;54(Pt 11):1037-41.
47. Martinez TM, Pino PY, Salazar BT, Jover LE, Caroca CC,Espinoza NM, et al. [Diagnostic utility of the polymerase chain reaction for the diagnosis of Mycoplasma pneumoniae in elderly patients with community-acquired pneumonia]. Rev Chilena Infectol 2005 Sep;22(3):251-6.
48. Ginevra C, Barranger C, Ros A, Mory O, Stephan JL, Freymuth F, et al. Development and evaluation of Chlamylege, a new commercial test allowing simultaneous detection and identification of Legionella, Chlamydophila pneumoniae, and Mycoplasma pneumoniae in clinical respiratory specimens by multiplex PCR. J Clin Microbiol 2005 Jul;43(7):3247-54.
49. Stralin K, Backman A, Holmberg H, Fredlund H, Olcen P. Design of a multiplex PCR for Streptococcus pneumoniae, Haemophilus influenzae, Mycoplasma pneumoniae and Chlamydophila pneumoniae to be used on sputum samples. APMIS 2005 Feb;113(2):99-111.
50. Raty R, Ronkko E, Kleemola M. Sample type is crucial to the diagnosis of Mycoplasma pneumoniae pneumonia by PCR. J Med Microbiol 2005 Mar;54(Pt 3):287-91.
51. Raggam RB, Leitner E, Berg J, Muhlbauer G, Marth E, Kessler HH. Single-run, parallel detection of DNA from three pneumonia-producing bacteria by real-time polymerase chain reaction. J Mol Diagn 2005 Feb;7(1):133-8.
52. Michelow IC, Olsen K, Lozano J, Duffy LB, McCracken GH, Hardy RD. Diagnostic utility and clinical significance of naso- and oropharyngeal samples used in a PCR assay to diagnose Mycoplasma pneumoniae infection in children with community-acquired pneumonia. J Clin Microbiol 2004 Jul;42(7):3339-41.
53. Tsolia MN, Psarras S, Bossios A, Audi H, Paldanius M, Gourgiotis D, et al. Etiology of community-acquired pneumonia in hospitalized school-age children: evidence for high prevalence of viral infections. Clin Infect Dis 2004 Sep 1;39(5):681-6.
54. Schneeberger PM, Dorigo-Zetsma JW, van der Zee A, van BM, van Opstal JL. Diagnosis of atypical pathogens in patients hospitalized with community-acquired respiratory infection. Scand J Infect Dis 2004;36(4):269-73.
55. Morozumi M, Hasegawa K, Chiba N, Iwata S, Kawamura N, Kuroki H, et al. Application of PCR for Mycoplasma pneumoniae detection in children with community-acquired pneumonia. J Infect Chemother 2004 Oct;10(5):274-9.
56. Baer G, Engelcke G, Abele-Horn M, Schaad UB, Heininger U. Role of Chlamydia pneumoniae and Mycoplasma pneumoniae as causative agents of community-acquired pneumonia in hospitalised children and adolescents. Eur J Clin Microbiol Infect Dis 2003 Dec;22(12):742-5.
57. Templeton KE, Scheltinga SA, Graffelman AW, Van Schie JM, Crielaard JW, Sillekens P, et al. Comparison and evaluation of real-time PCR, real-time nucleic acid sequencebased amplification, conventional PCR, and serology for diagnosis of Mycoplasma pneumoniae. J Clin Microbiol 2003 Sep;41(9):4366-71.
58. Ursi D, Ieven M, Noordhoek GT, Ritzler M, Zandleven H, Altwegg M. An interlaboratory comparison for the detection of Mycoplasma pneumoniae in respiratory samples by the polymerase chain reaction. J Microbiol Methods 2003 Jun;53(3):289-94.
59. Welti M, Jaton K, Altwegg M, Sahli R, Wenger A, Bille J.Development of a multiplex real-time quantitative PCR assay to detect Chlamydia pneumoniae, Legionella pneumophila and Mycoplasma pneumoniae in respiratory tract secretions. Diagn Microbiol Infect Dis 2003 Feb;45(2):85-95.
60. Ursi D, Dirven K, Loens K, Ieven M, Goossens H. Detection of Mycoplasma pneumoniae in respiratory samples by realtime PCR using an inhibition control. J Microbiol Methods 2003 Oct;55(1):149-53.
61. Oguz F, Unuvar E, Aydin D, Yilmaz K, Sidal M. Frequency of Mycoplasma pneumoniae among atypical pneumonia of childhood. Turk J Pediatr 2002 Oct;44(4):283-8.
62. Haaheim H, Vorland L, Gutteberg TJ. Laboratory diagnosisof respiratory diseases: PCR versus serology. Nucleosides
Nucleotides Nucleic Acids 2001 Apr;20(4-7):1255-8.
63. Esposito S, Blasi F, Bellini F, Allegra L, Principi N. Mycoplasma pneumoniae and Chlamydia pneumoniae infections in
children with pneumonia. Mowgli Study Group. Eur Respir J 2001 Feb;17(2):241-5.
64) Waring AL, Halse TA, Csiza CK, Carlyn CJ, Arruda MK, Limberger RJ. Development of a genomics-based PCR assay for detection of Mycoplasma pneumoniae in a large outbreak in New York State. J Clin Microbiol 2001 Apr;39(4):1385-90.
64. Nadala D, Bossart W, Zucol F, Steiner F, Berger C, Lips U, et al. Community-acquired pneumonia in children due to Mycoplasma pneumoniae: diagnostic performance of a seminested 16S rDNA-PCR. Diagn Microbiol Infect Dis 2001 Jan;39(1):15-9.
65. Principi N, Esposito S, Blasi F, Allegra L. Role of Mycoplasma pneumoniae and Chlamydia pneumoniae in children with
community-acquired lower respiratory tract infections. Clin Infect Dis 2001 May 1;32(9):1281-9.
66. Tay ST, Habsah MY, Tan SC, Rohani MY. Isolation and polymerase chain reaction detection of Mycoplasma pneumoniae in Malaysian patients with respiratory tract infections. Southeast Asian J Trop Med Public Health 2000 Dec;31(4):688-92.
67. Honda J, Yano T, Kusaba M, Yonemitsu J, Kitajima H, Masuoka M, et al. Clinical use of capillary PCR to diagnose Mycoplasma pneumonia. J Clin Microbiol 2000 Apr;38(4):1382-4.
68. Wubbel L, Muniz L, Ahmed A, Trujillo M, Carubelli C, McCoig C, et al. Etiology and treatment of community-acquired pneumonia in ambulatory children. Pediatr Infect Dis J 1999 Feb;18(2):98-104.
69. Corsaro D, Valassina M, Venditti D, Venard V, Le FA, Valensin PE. Multiplex PCR for rapid and differential diagnosis of Mycoplasma pneumoniae and Chlamydia pneumoniae in respiratory infections. Diagn Microbiol Infect Dis 1999 Oct;35(2):105-8.
70. Tong CY, Donnelly C, Harvey G, Sillis M. Multiplex polymerase chain reaction for the simultaneous detection of Mycoplasma pneumoniae, Chlamydia pneumoniae, and Chlamydia psittaci in respiratory samples. J Clin Pathol 1999 Apr;52(4):257-63.
71. Dorigo-Zetsma JW, Zaat SA, Wertheim-van Dillen PM, Spanjaard L, Rijntjes J, van WG, et al. Comparison of PCR, culture, and serological tests for diagnosis of Mycoplasma pneumoniae respiratory tract infection in children. J Clin Microbiol 1999 Jan;37(1):14-7.
73. Saez-Llorens X, Castano E, Wubbel L, Castrejon MM, de M, I, Vallarino D, et al. [Importance of Mycoplasma pneumoniae and Chlamydia pneumoniae in children with community-acquired pneumonia]. Rev Med Panama 1998 Sep;23(2):27-33.
74. Waris ME, Toikka P, Saarinen T, Nikkari S, Meurman O, Vainionpaa R, et al. Diagnosis of Mycoplasma pneumoniae pneumonia in children. J Clin Microbiol 1998 Nov;36(11):3155-9.
75. Ieven M, Ursi D, Van BH, Quint W, Niesters HG, Goossens H. Detection of Mycoplasma pneumoniae by two polymerase chain reactions and role of M. pneumoniae in acute respiratory tract infections in pediatric patients.J Infect Dis 1996 Jun;173(6):1445-52.
76. Ramirez JA, Ahkee S, Tolentino A, Miller RD, Summersgill JT. Diagnosis of Legionella pneumophila, Mycoplasma pneumoniae, or Chlamydia pneumoniae lower respiratory infection using the polymerase chain reaction on a single throat swab specimen. Diagn Microbiol Infect Dis 1996 Jan;24(1):7-14.
77. Blackmore TK, Reznikov M, Gordon DL. Clinical utility of the polymerase chain reaction to diagnose Mycoplasma pneumoniae infection. Pathology 1995 Apr;27(2):177-81.
79. Fink CG, Read SJ, Sillis M. Direct sample polymerase chain reaction for the detection of Mycoplasma pneumoniae: a simple system for clinical application. Br J Biomed Sci 1995 Mar;52(1):9-13.
80. van Kuppeveld FJ, Johansson KE, Galama JM, Kissing J, Bolske G, Hjelm E, et al. 16S rRNA based polymerase chain
reaction compared with culture and serological methods for diagnosis of Mycoplasma pneumoniae infection. Eur J Clin Microbiol Infect Dis 1994 May;13(5):401-5.
81. Leng Z, Kenny GE, Roberts MC. Evaluation of the detection limits of PCR for identification of Mycoplasma pneumoniae
in clinical samples. Mol Cell Probes 1994 Apr;8(2):125-30.
82. Tjhie JH, van Kuppeveld FJ, Roosendaal R, Melchers WJ, Gordijn R, MacLaren DM, et al. Direct PCR enables detection
of Mycoplasma pneumoniae in patients with respiratory tract infections. J Clin Microbiol 1994 Jan;32(1):11-6.
83. Luneberg E, Jensen JS, Frosch M. Detection of Mycoplasma pneumoniae by polymerase chain reaction and nonradioactive hybridization in microtiter plates. J Clin Microbiol 1993 May;31(5):1088-94.
84. Kai M, Kamiya S, Yabe H, Takakura I, Shiozawa K, Ozawa A. Rapid detection of Mycoplasma pneumoniae in clinical samples by the polymerase chain reaction. J Med Microbiol 1993 Mar;38(3):166-70.
85. Zigangirova NA, Popova OV, Solovjeva CV, Gintzburg AL, Prozorovsky SV. Development of a PCR-based method for diagnosing Mycoplasma pneumoniae infections. Lett Appl Microbiol 1993 Feb;16(2):106-9.
86. Williamson J, Marmion BP, Worswick DA, Kok TW, Tannock G, Herd R, et al. Laboratory diagnosis of Mycoplasma pneumoniae infection. 4. Antigen capture and PCR-gene amplification for detection of the Mycoplasma: problems of clinical correlation. Epidemiol Infect 1992 Dec;109(3):519-37.
87. Skakni L, Sardet A, Just J, Landman-Parker J, Costil J, Moniot-Ville N, et al. Detection of Mycoplasma pneumoniae in clinical samples from pediatric patients by polymerase chain reaction. J Clin Microbiol 1992 Oct;30(10):2638-43.
88. Buck GE, Eid NS. Diagnosis of Mycoplasma pneumoniae pneumonia in pediatric patients by polymerase chain reaction
(PCR). Pediatr Pulmonol 1995 Nov;20(5):297-300.
89. Sarmiento OL, Weigle KA, Alexander J, Weber DJ, Miller WC. Assessment by meta-analysis of PCR for diagnosis of smear-negative pulmonary tuberculosis. J Clin Microbiol 2003 Jul;41(7):3233-40.
90. te WR, W.B.Leeuwen, A.Belkum. Specific Diagnostic Tests for Atypical Respiratory Tract Pathogens. Infect Dis Clin North Am 2010 Mar;24(1):229-48.
91 Kramer MF, Coen DM. Enzymatic amplification of DNA by PCR: standard procedures and optimization. Curr Protoc Immunol 2001 May;Chapter 10:Unit. (91) Nir-Paz R, Michael-Gayego A, Ron M, Block C. Evaluation of eight commercial tests for Mycoplasma pneumoniae antibodies in the absence of acute infection. Clin Microbiol Infect 2006 Jul;12(7):685-8. (92) ZhangLei, Zong ZY, Liu YB, Ye H, Lv Xiao. PCR versus serology for diagnosing Mycoplasma pneumoniae infection: A
systematic review & meta-analysis. Indian J Med Res. 2011 Sep; 134(3): 270–280
92. Loannidis JP, Trikalinos TA. The appropriateness of asymmetry tests for publication bias in meta-analyses: a large survey. CMAJ 2007 Apr 10;176(8):1091-6. (94) Lau J, Ioannidis JP, Terrin N, Schmid CH, Olkin I. The case of the misleading funnel plot. BMJ 2006 Sep 16;333(7568):597-600.

Fecha de recibido: Agosto 5 de 2013
Fecha de aprobado: Septiembre 2 de 2013
Dirección para correspondencia:
Olga L. Sarmiento, Universidad de los Andes, Facultad
de Medicina, Cra 1 No 18A-10, Edificio Q, Oficina-Q811,
Bogotá, Colombia. Correo electrónico:
osarmien@uniandes.edu.co

CLIC AQUÍ Y DÉJANOS TU COMENTARIO

Deja un comentario

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *