Tumores neuroendocrinos de páncreas, Evaluación genética

Si el paciente presenta dos o más tumores neuroendocrinos, o estos se han detectado en dos o más miembros de la familia, se requiere el estudio de enfermedades heredofamiliares que, dependiendo del fenotipo expresado, hará la evaluación más costo-efectiva.

El síndrome más frecuente que involucra tumores neuroendocrinos de páncreas es el MEN-1. Este está presente en 20 a 25 % de los pacientes con gastrinomas, en 4 % de aquellos con insulinomas y en menos de 3 % en otros tumores neuroendocrinos de páncreas. Casi todos los pacientes con MEN-1 tienen múltiples focos de tumores no funcionales y asintomáticos. Otros, son el síndrome MEN-4 (gen CDKN1) 75,76 y la enfermedad de von Hippel-Lindau (gen VHL) 77. Recientemente, se han caracterizado la deficiencia en el gen MUTYH que se asocia con predisposición a cáncer de colon, cáncer gástrico y otros no gastrointestinales 78, y la mutación de CHEK2, que se asocia con carcinoma de mama y de próstata 79.

Tumores neuroendocrinos funcionales de páncreasTumores neuroendocrinos funcionales de páncreas

Conclusiones 

En la actualidad, se cuenta con múltiples biomarcadores para el abordaje inicial y el seguimiento de los tumores neuroendocrinos, y en los gastroenteropancréaticos se tiene la mayor evidencia al respecto. No existe un biomarcador perfecto debido a la complejidad y la heterogeneidad de los tumores neuroendocrinos. Dependemos de la evaluación clínica, radiológica y de la experienciamédica asociada al recurso disponible.

Los biomarcadores séricos y urinarios son difíciles de medir y tienen importante variabilidad preanalítica y analítica. Sin embargo, en los tumores neuroendocrinos funcionales, los biomarcadores séricos tienen mayor rendimiento y son necesarios para establecer el diagnóstico. Un solo estudio, por sí mismo, no brinda la suficiente información diagnóstica, predictiva ni pronóstica. La cromogranina A está sobrevalorada en la práctica clínica y es necesario estandarizarla para nuestra población y conocer muy bien los falsos positivos.

Disponemos de múltiples estudios genéticos, sin embargo, muchos estudios de mutaciones genéticas en tejido y en sangre, no tienen estudios de validación pronóstica ni confirmatoria en los tumores neuroendocrinos de páncreas. Los miRNA han sido evaluados en forma exploratoria y no hay estudios confirmatorios. Las alteraciones epigenéticas han sido evaluadas en pequeños estudios y les falta validación prospectiva. La evaluación multianalítica tiene el potencial de mayor sensibilidad y especificidad en la evaluación inicial y seguimiento, pero requiere revalidación en múltiples circunstancias. Por ahora, se deben practicar estudios genéticos si hay sospecha de síndrome herodofamiliar, sea por el antecedente familiar o por la sintomatología del paciente.

En resumen, una buena historia clínica aunada al conocimiento de la patología, con el uso rutinario del índice Ki-67 y del conteo mitótico, nos ayuda a definir las mejores herramientas para el abordaje del paciente con tumores neuroendocrinos de páncreas y planear el mejor tratamiento y seguimiento.Referencias

1. Halperin D. Neuroendocrine Tumors. En: Kantarjian H, Wolff R, editors. The MD Anderson Manual of Medical Oncology. Third edition. New York: The Mc- Graw-Hill Companies, Inc; 2016.
2. Dasari A, Shen C, Halperin D, Zhao B, Zhou S, Xu Y. Trends in the incidence, prevalence, and survival outcomes in patients with neuroendocrine tumors in the United States. JAMA Oncol. 2017;77030:1-8. doi: 10.1001/jamaoncol.2017.0589.
3. Gonzalez-Devia D, López-Panqueva R, Taboada-Barrios L. Experiencia diagnóstica en tumores neuroendocrinos del Hospital Universitario FSFB, 2001-2010. Bogotá: Fundación Santa Fe de Bogota; 2011.
4. Chiruvella A, Kooby DA. Surgical management of pancreatic neuroendocrine tumors. Surg Oncol Clin N Am. 2016;25:401-21. doi: 10.1016/j.soc.2015.12.002.
5. Mougery A, Adler DG. Neuroendocrine tumors: Review and clinical update. Hosp Physician. 2007;51:12-21.
6. Thakker RV. Molecular and cellular endocrinology multiple endocrine neoplasia type 1 (MEN1) and type 4 (MEN4). Mol Cell Endocrinol. 2014;386:2-15. doi: 10.1016/j.mce.2013.08.002.
7. Kulke MH, Benson AB 3rd, Bergsland E, Berlin JD, Blaszkowsky LS, Choti MA, et al. Neuroendocrine tumors: Clinical Practice Guidelines in Oncology. J Natl Compr Canc Netw. 2012;10:724-64.
8. Agarwal SK, Mateo CM, Marx SJ. Rare germline mutations in cyclin-dependent kinase inhibitor genes in multiple endocrine neoplasia type 1 and related states. J Clin Endocrinol Metab. 2009;94:1826-34. doi: 10.1210/jc.2008-2083.
9. Minnetti M, Grossman A. Somatic and germline mutations in NETs: Implications for their diagnosis and management. Best Pract Res Clin Endocrinol Metab. 2017;30:115-27. doi: 10.1016/j.beem.2015.09.007.
10. Tamm EP, Bhosale P, Lee JH, Rohren EM. State-ofthe- art imaging of pancreatic neuroendocrine tumors. Surg Oncol Clin N Am. 2016;25:375-400. doi: 10.1016/j.soc.2015.11.007.
11. Bosman FT, Carneiro F, Hruban RH, Theise ND. WHO Classification of tumours of the digestive system. Fourth edition. Int Agency Res Cancer. 2010;3:382-95.
12. Halfdanarson TR, Rabe KG, Rubin J, Petersen GM. Pancreatic neuroendocrine tumors (PNETs): Incidence, prognosis and recent trend toward improved survival. Ann Oncol. 2008;19:1727-33. doi: 10.1093/annonc/mdn351.
13. Liu JB, Baker M. Surgical management of pancreatic neuroendocrine tumors. Surg Clin N Am. 2016;96:1447-68. doi: 10.1016/j.suc.2016.07.002.
14. Tang LH, Untch BR, Reidy DL, Reilly EO, Dhall D, Jih L, et al. Well differentiated neuroendocrine tumors with a morphologically apparent high grade component: A pathway distinct from poorly differentiated neuroendocrine carcinomas. Clin Cancer Res. 2016;22:1011-7. doi: 10.1158/1078-0432.
15. Chi C, Klimstra D. Somatostatin receptor expression related to TP53 and RB1 alterations in pancreatic and extrapancreatic neuroendocrine neoplasms with a Ki67-index above 20%. Semin Diagn Pathol. 2014;31:498-511. doi: 10.1038/modpathol.2016.217.
16. Milione M, Spada F, Sessa F, Capella C, La S. The clinicopathologic heterogeneity of grade 3 gastroenteropancreatic neuroendocrine neoplasms: Morphological differentiation and proliferation identify different prognostic categories. Neuroendocrinology. 2017;104:85-93. doi: 10.1159/000445165.
17. Perren A, Couvelard A, Scoazec J, Costa F, Borbath I, Delle Fave G, et al. ENETS consensus guidelines for the standards of care in neuroendocrine tumors. Pathology: Diagnosis and prognostic stratification. Neuroendocrinology. 2017;105:196-200.
18. Lloyd R, Osamura R, Klöpel G, Rosai J. WHO classification of tumours of endocrine organs. Fourth edition. Vol. 10. Lyon, France: IARC Classification of Tumours; 2017. p. 209-39.
19. Smith S, Brick A, O’Hara S, Normand C. Evidence on the cost and cost-effectiveness of palliative care: A literature review. Palliat Med. 2014;28:130-50. doi: 10.1177/0269216313493466.
20. Luo G, Jin K, Cheng H, Guo M, Lu Y. Pancreatology revised nodal stage for pancreatic neuroendocrine tumors. Pancreatology. 2017;17:1-6. doi: 10.1016/j. pan.2017.06.003.
21. Anderson CW, Bennett JJ. Clinical presentation and diagnosis of pancreatic neuroendocrine tumors. Surg Oncol Clin N Am. 2016;25:363-74. doi: 10.1016/j. soc.2015.12.003.
22. Alshaikh OM, Yoon JY, Chan BA, Krzyzanowska MK, Butany J, Asa SL, et al. Pancreatic neuroendocrine tumor producing insulin and vasopressin. Endocr Pathol. 2017;28:1-6. doi: 10.1007/s12022-017-9492-5.
23. Jensen RT. Endocrine tumors of the gastrointestinal tract and pancreas. In: Harrison´s Principles of Internal Medicine. 19th edition. New York: The Mc- Graw-Hill Companies, Inc.; 2015.
24. Garbrecht N, Anlauf M, Schmitt A, Henopp T, Sipos B, Raffel A, et al. Somatostatin-producing neuroendocrine tumors of the duodenum and pancreas: Incidence, types, biological behavior, association with inherited syndromes, and functional activity. Endocr Relat Cancer. 2018;15:229-41. doi: 10.1677/ERC-07- 0157.
25. Hulka B. Epidemiological studies using biological markers: Issues for epidemiologists. Cancer Epidemiol Biomarkers Prev. 1991;1:13-29.
26. Oberg K, Modlin IM, Herder W De, Pavel M, Klimstra D, Frilling A, et al. Consensus on biomarkers for neuroendocrine tumour disease. Lancet Oncol. 2015;16:435-46. doi: 10.1016/S1470-2045(15)00186-2.
27. Jianu CS, Fossmark R, Syversen U, Hauso Ø, Waldum HL. A meal test improves the specificity of chromogranin A as a marker of neuroendocrine neoplasia.
Tumor Biol. 2010;31:373-80. doi: 10.1007/s13277-010- 0045-5.
28. Stridsberg M, Eriksson B, Öberg K, Janson ET. A comparison between three commercial kits for chromogranin A measurements. J Endocrinol. 2003;177:337-41.
29. Stridsberg M, Oberg K, Li Q. Measurements of chromogranin a, chromogranin b (secretogranin i), chromogranin c (secretogranin ii) and pancreastatin in plasma and urine from patients with carcinoid tumours and endocrine pancreatic tumours. J Endocrinol. 1995;144:49-59. doi: 10.1677/joe.0.1440049.
30. Ito T, Igarashi H, Jensen R. Serum pancreastatin: The long sought for universal, sensitive, specific tumor marker for neuroendocrine tumors (nets)? Pancreas. 2012;41:505-7. doi: 10.1097/MPA.0b013e318249a92a.
31. Bech PR, Martin NM, Ramachandran R, Bloom SR. The biochemical utility of chromogranin A , chromogranin B and cocaine- and amphetamine-regulated transcript for neuroendocrine neoplasia. Ann Clin Biochem. 2013;51:8-21. doi: 10.1177/0004563213489670.
32. Baudin E, Gigliottil A, Ducreux M, Ropers J, Comoy E, Sabourin JC, et al. Neuron-specific enolase and chromogranin A as markers of neuroendocrine tumours. Br J Cancer. 1998;78:1102-7. doi: 10.1038/bjc.1998.635.
33. Langstein H, Norton J, Chiang V. The utility of circulating levels of human pancreatic polypeptide as a marker for islet cell tumors. Surgery. 1990;108:1109-15.
34. Walter T, Chardon L, CHopin-laly X, Raverot V, Caffin A, Chayvialle J, et al. Is the combination of chromogranin A and pancreatic polypeptide serum determinations of interest in the diagnosis and follow- up of gastro-entero-pancreatic neuroendocrine tumours ?. Eur J Cancer. 2012;48:1766-73. doi: 10.1016/j. ejca.2011.11.005.
35. César S, Medrano-Guzmán R, López-García SC, Torres-Vargas S, González-Rodríguez D, Alvarado- Cabrero I. Resecabilidad del tumor primario neuroendocrino gastroenteropancreático como factor pronóstico de supervivencia. Cir Cir. 2011;79:498- 504.
36. Khan MS, Tsigani T, Rashid M, Rabouhans JS, Yu D, Luong TV, et al. Circulating tumor cells and EpCAM expression in neuroendocrine tumors. Clin Cancer Res. 2011;17:337-46. doi: 10.1158/1078-0432.
37. Khan MS, Kirkwood A, Tsigani T, García-Hernández J, Hartley JA, Caplin ME, et al. Circulating tumor cells as prognostic markers in neuroendocrine tumors. J Clin Oncol. 2012;31:365-72.
38. Li A, Yu J, Kim H, Wolfgang CL, Canto MI, Hruban RH. MicroRNA array analysis finds elevated serum miR-1290 accurately distinguishes patients with low-stage pancreatic cancer from healthy and disease controls. Clin Cancer Res. 2013;19:3600-11. doi: 10.1158/1078-0432.
39. Thorns C, Schurmann C, Gebauer N, Wallaschofski H, Kümpers C, Bernard V, et al. Global microRNA profiling of pancreatic neuroendocrine neoplasias. Anticancer Res. 2014;34:2249-54.
40. Roldo C, Missiaglia E, Hagan JP, Falconi M, Capelli P, Bersani S, et al. MicroRNA expression abnormalities in pancreatic endocrine and acinar tumors are associated with distinctive pathologic features and clinical behavior. J Clin Oncol. 2006;24:4677-84. doi: 10.1200/ JCO.2005.05.5194.
41. Modlin IM, Drozdov I, Kidd M. Gut neuroendocrine tumor blood qPCR fingerprint assay: Characteristics and reproducibility. Clin Chem Lab Med. 2014;52:419- 29. doi: 10.1515/cclm-2013-0496.
42. Modlin IM, Kidd M, Bodei L, Drozdov I, Aslanian H. The clinical utility of a novel blood-based multi-transcriptome assay for the diagnosis of neuroendocrine tumors of the gastrointestinal tract. Am J Gastroenterol. 2015;110:1223-32. doi: 10.1038/ajg.2015.160.
43. Scarpa A, Chang D, Nones K. Whole-genome landscape of pancreatic neuroendocrine tumours. Nature. 2017;543:65-71. doi: 10.1038/nature21063.
44. Bodel L, Kidd M, Singh A, Van der Zwan W, Severi S. PRRT genomic signature in blood for prediction of 177 Lu-octreotate efficacy. Eur J Nucl Med Mol Imaging. 2018;15:1-15. doi: 10.1007/s00259-018-3967-6.
45. Vargas C, Castaño R. Tumores neuroendocrinos gastroenteropancreáticos. Rev Colomb Gastroenterol. 2010;25:165-76.
46. Takumi K, Fukukura Y, Higashi M. Pancreatic neuroendocrine tumors: Correlation between the contrast- enhanced computed tomography features and the pathological tumor grade. Eur J Radiol. 2015;84:1436-43. doi: 10.1016/j.ejrad.2015.05.005.
47. Humphrey PE, Alessandrino F, Bellizzi AM, Mortele KJ. Non-hyperfunctioning pancreatic endocrine tumors: Multimodality imaging features with histopathological correlation. Abdom Imaging. 2015;40:2398-410. doi: 10.1007/s00261-015-0458-0.
48. Antonio J, Pereira S, Rosado E, Bali M, Metens T, Chao S. Pancreatic neuroendocrine tumors: Correlation between histogram analysis of apparent diffusion coefficient maps and tumor grade. Abdom Imaging. 2015;40:3122-8. doi: 10.1007/s00261-015-0524-7.
49. Reubi JC, Waser B. Concomitant expression of several peptide receptors in neuroendocrine tumours: Molecular basis for in vivo multireceptor tumour targeting. Eur J Nucl Med Mol Imaging. 2003;30:781-93. doi: 10.1007/s00259-003-1184-3.
50. Gouda M. Islamic constitutionalism and rule of law: A constitutional economics perspective. Const Polit Econ. 2013;24:57-85. doi: 10.1007/s10602-012-9132-5.
51. Ahlstrom H, Eriksson B, Bergstrom M. Pancreatic neuroendocrine tumors: Diagnosis with PET. Radiology. 1995;195:333-47. doi: 10.1148/radiology.195.2.7724749.
52. Koopmans KP, Neels ON, Kema IP, Elsinga PH, Links TP, Vries EGE De, et al. Molecular imaging in neuroendocrine tumors: Molecular uptake mechanisms and clinical results. Crit Rev Oncol Hematol. 2009;71:199-213. doi: 10.1016/j.critrevonc.2009.02.009.
53. Herder W, Lamberts S. Somatostatin and somatostatin analogues: Diagnostic and therapeutic uses. Curr Opin Oncol. 2002;12:53-7. doi: 10.1097/00001622- 200201000-00010.
54. Srirajaskanthan R, Kayani I, Quigley AM, Soh J, Caplin ME. The role of 68 Ga-DOTATATE PET in patients with neuroendocrine tumors and negative or equivocal findings on 111 In-DTPA-octreotide scintigraphy. J Nucl Med. 2015;51:875-82. doi: 10.2967/jnumed.109.066134.
55. Toumpanakis C, Kim M, Rinke A. Combination of cross-sectional and molecular imaging studies in the localization of gastroenteropancreatic neuroendocrine tumors. Neuroendocrinology. 2014;99:63-74. doi: 10.1159/000358727.
56. Poeppel TD, Binse I, Petersenn S, Lahner H, Schott M, Antoch G, et al. 68Ga-DOTATOC versus 68Ga-DOTATATE PET/CT in functional imaging of neuroendocrine tumors. J Nucl Med. 2011;52:1864-71. doi: 10.2967/jnumed.111.091165.
57. Wild D, Bomanji JB, Benkert P, Maecke H, Ell PJ, Reubi JC, et al. Comparison of 68 Ga-DOTANOC and 68 Ga-DOTATATE PET/CT within patients with gastroenteropancreatic neuroendocrine tumors. J Nucl Med. 2013;54:364-72. doi: 10.2967/jnumed.112.111724.
58. Kabasakal L, Demirci E, Ocak M. Comparison of 68 Ga-DOTATATE and 68 Ga-DOTANOC PET/CT imaging in the same patient group with neuroendocrine tumours. Eur J Nucl Med Mol Imaging. 2012;39:1271-7. doi: 10.1007/s00259-012-2123-y.
59. Simsek DH, Kuyumcu S, Turkmen C, Sanl Y, Aykan F, Unal S, et al. Can complementary 68Ga-DOTATATE and 18F-FDG PET/CT establish the missing link between histopathology and therapeutic approach in gastroenteropancreatic neuroendocrine tumors?. J Nucl Med. 2015;55:1811-8. doi: 10.2967/ jnumed.114.142224.
60. Garin E, Jeune F Le, Devillers A, Cuggia M, Bouriel C, Boucher E, et al. Predictive value of 18 F-FDG PET and somatostatin receptor scintigraphy in patients with metastatic endocrine tumors. J Nucl Med. 2009;50:858-65. doi: 10.2967/jnumed.108.057505.
61. Binderup T, Knigge U, Loft A, Federspiel B, Kjaer A. 18F-fluorodeoxyglucose positron emission tomography predicts survival of patients with neuroendocrine tumors. Clin Cancer Res. 2010;16:978-86. doi: 10.1158/1078-0432.
62. Koopmans KP, Neels OC, Kema IP, Elsinga PH, Sluiter WJ, Vanghillewe K, et al. Improved Staging of Patients With Carcinoid and Islet Cell Tumors With 18F-Dihydroxy- Phenyl-Alnine and 11C-5-Hydroxy-Tryptophan Positron Emission Tomography. J Clin Oncol. 2015;26:1489–95. doi: 10.1200/JCO.2007.15.1126.
63. Ambrosini V, Tomassetti P, Castellucci P, Campana D, Montini G, Rubello D, et al. Comparison between 68 Ga-DOTA-NOC and 18 F-DOPA PET for the detection of gastro-entero-pancreatic and lung neuro-endocrine tumours. Eur J Nucl Med Mol Imaging. 2008;35:1431-8. doi: 10.1007/s00259-008-0769-2.
64. Haug A, Auernhammer CJ, Wängler B, Tiling R, Schmidt G. Intraindividual comparison of 68 Ga- DOTA-TATE and 18 F-DOPA PET in patients with well-differentiated metastatic neuroendocrine tumours. Eur J Nucl Med Mol Imaging. 2009;36:765-70. doi: 10.1007/s00259-008-1030-8.
65. Christ E, Wild D, Forrer F. Glucagon-like peptide-1 receptor imaging for localization of insulinomas. J Clin Endocrinol Metab. 2009;94:4398-405. doi: 10.1210/jc.2009-1082.
66. Sowa-Staszczak A, Pach D, Miko R, Mäcke H. Glucagon- like peptide-1 receptor imaging with [Lys40( Ahx-HYNIC-99mTc/EDDA)NH2]-exendin-4 for the detection of insulinoma. Eur J Nucl Med Mol Imaging. 2013;40:524-31. doi: 10.1007/s00259-012-2299-1.
67. Wenning AS, Kirchner P, Antwi K, Fani M, Wild D, Christ E. Preoperative glucagon-like peptide-1 receptor imaging reduces surgical trauma and pancreatic tissue loss in insulinoma patients: A report of three cases. Patient Saf Surg. 2015;9:23. doi: 10.1186/s13037-015-0064-7.
68. Antwi K, Fani M, Nicolas G, Rottenburger C, Heye T. Localization of hidden insulinomas with Ga-DOTA- exendin-4 PET/CT: A pilot study. J Nucl Med. 2015;56:1075-8. doi: 10.2967/jnumed.115.157768.
69. Wild D, Fani M, Behe M, Brink I, Rivier JEF, Reubi JC, et al. First clinical evidence that imaging with somatostatin receptor antagonists is feasible. J Nucl Med. 2014;52:1412-8. doi: 10.2967/jnumed.111.088922.
70. Cescato R, Waser B, Fani M, Reubi JC. Evaluation of 177 Lu-DOTA-sst 2 antagonist versus 177 Lu-DOTAsst agonist binding in human cancers in vitro. J Nucl Med. 2011;52:1886-91. doi: 10.2967/jnumed.111.095778.
71. Cescato R, Erchegyi J, Waser B, Maecke HR, Rivier JE, Reubi JC, et al. Design and in vitro characterization of highly sst 2-selective somatostatin antagonists suitable for radiotargeting. J Med Chem. 2008;51:4030-7. doi: 10.1021/jm701618q.
72. Wild D, Fani M, Fischer R, Pozzo L Del, Kaul F, Krebs S, et al. Comparison of somatostatin receptor agonist and antagonist for peptide receptor radionuclide therapy: A pilot study. J Nucl Med. 2014;55:1-5. doi: 10.2967/jnumed.114.138834.
73. Puli SR, Kalva N, Bechtold ML, Pamulaparthy SR, Cashman MD, Estes NC, et al. Diagnostic accuracy of endoscopic ultrasound in pancreatic neuroendocrine tumors: A systematic review and meta analysis.
World J Gastroenterol. 2013;19:3678-84. doi: 10.3748/ wjg.v19.i23.3678.
74. Wiesli P, Brändle M, Schmid C, Krähenbühl L, Furrer J. Selective arterial calcium stimulation and hepatic venous sampling in the evaluation of hyperinsulinemic hypoglycemia: Potential and limitations. J Vasc Interv Radiol. 2004;15:1251-6. doi: 10.1097/01. RVI.0000140638.55375.1E.
75. Francis JM, Kiezun A, Ramos AH, Serra S, Pedamallu CS, Qian ZR, et al. Somatic mutation of CDKN1B in small intestine neuroendocrine tumors. Nat Genet. 2013;45:1483-7. doi: 10.1038/ng.2821.
76. Georgitsi M, Raitila A, Karhu A, Luijt RB, Aalfs C, Sane T, et al. Germline CDKN1B/p27Kip1 mutation in multiple endocrine neoplasia. J Clin Endocrinol Metab. 2015;92:3321-5. doi: 10.1210/jc.2006-2843.
77. Lubensky IA, Pack S, Ault D, Vortmeyer AO, Libutti SK, Choyke PL, et al. Multiple neuroendocrine tumors of the pancreas in von Hippel-Lindau disease patients histopathological and molecular genetic analysis. Am J Pathol. 1998;153:223-31. doi: 10.1016/S0002-9440(10)65563-0.
78. Vogt S, Jones N, Christian D, Engel C, Nielsen M, Kaufmann A, et al. Expanded extracolonic tumor spectrum in MUTYH-associated polyposis. Gastroenterology. 2009;137:1976-85. doi: 10.1053/j.gastro. 2009.08.052.
79. Dong X, Wang L, Taniguchi K, Wang X, Cunningham JM, Mcdonnell SK, et al. Mutations in CHEK2 associated with prostate cancer risk. Am J Hum Genet. 2003;72:270-80. doi: 10.1086/346094.
80. Uccella S, Blank A, Maragliano R, Sessa F, Perren A, La Rosa S. Calcitonin-producing neuroendocrine neoplasms of the pancreas: Clinicopathological study of 25 cases and review of the literature. Endocr Pathol. 2017;28:1-11. doi: 10.1007/s12022-017-9505-4.
81. Eriksson O, Velikyan I, Selvaraju RK, Kandeel F, Johansson L, Antoni G, et al. Detection of metastatic insulinoma by positron emission tomography with [68Ga]exendin-4—A case report. J Clin Endocrinol Metab. 2014;99:1519-24. doi: 10.1210/jc.2013-3541.
82. Pfeifer A, Knigge U, Binderup T, Mortensen J, Oturai P, Loft A, et al. 64Cu – DOTATATE PET for neuroendocrine tumors: A prospective head to head comparison with 111 In-DTPA-octreotide in 112 patients. J Nucl Med. 2015;56:847-54. doi: 10.2967/jnumed.115.156539.

CLIC AQUÍ Y DÉJANOS TU COMENTARIO

Deja un comentario

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *